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This report covers the final work completed on the research project 

"Scramjet Inlet Analysis." The work was supported by the NASA/Langley 

Research Center (Hypersonic Propulsion Branch of the High-speed Aerodynamics 

Division) through research contract NASl-15930. The contract was monitored 

by Dr. Harry L. Beach, Jr. of the High-Speed Aerodynamics Division. 
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SUMMARY 

A computer code has been developed to solve the full two-dimensional 

Navier-Stokes equations in a scramjet inlet. The analysis uses a numerical 

coordinate transformation which generates a set of boundary-fitted curvilin- 

ear coordinates. The explicit finite-difference algorithm of MacCormack is 

used to solve the governing equations. A two-layer eddy viscosity model is 

used for the turbulent flow. The code can analyze both inviscid and viscous 

flows with multiple struts In the flow field. Detailed results are present- 

ed for two model problems and two scramjet inlets with one and two struts. 

The application of the two-dimensional analysis in the preliminary design of 

the actual scramjet inlet is briefly discussed. 

INTRODUCTION 

NASA/Langley Research Center (LaRC) is currently engaged in developing 

an air-frame-integrated, hydrogen-fueled, supersonic combustion, ramjet 

engine (scramjet) for hypersonic speeds (refs. 1 and 2). Vehicle-propulsion 

system integration provides the use of the vehicle forebody to precompress 

the engine airflow before it enters the inlet and the use of the vehicle 

afterbody for additional expansion of the nozzle exhaust gas. Figure 1 

shows the basic engine concept. It is seen that the entire under surface of 

the vehicle is part of the propulsion system. At high Mach numbers, the 

need for integration arises because almost all of the airflow between the 

vehicle and its bow shock is required by the engine for good performance. 

This suggests an inlet capture area with an annular shape. By splitting the 



annular area into smaller rectangular modules, the primary engine becomes a 

system of identical units of size and shape appropriate for test in ground 

facilities. One such rectangular module is shown in figure 2 with a cross 

sectional view at the bottom of the figure. The module has a fixed-geometry 

inlet with wedgeshaped sidewalls. Sweep of these sidewalls, in combination 

with a recess in the cowl, allows spillage to occur efficiently with fixed 

geometry of the inlet. Inlet compression is completed by three wedge-shaped 

struts located at the minimum-area section. 

Considerable aerodynamic testing over a period of years has resulted in 

an inlet design which performs well over a wide Mach number range (refs. 3 

and 4). The basic design features of this inlet are described in reference 

3. A problem that has been discovered in the experimental work is an inter- 

action between the combustiorr-induced disturbances and the inlet flow; this 

has resulted in either increased spillage from the inlet or complete engine 

unstart. Although this interaction problem is being investigated in further 

inlet and engine tests, it has not yet been addressed analytically. With 

the availability of high-speed computers, it is now feasible to analytically 

study the flow in a scramjet inlet. This will not only help in analyzing 

the problems observed experimentally but will also allow a parametric study 

in the inlet design with a substantial reduction in cost and time. 

The flow in the scramjet inlet is highly threedimensional, possibly 

turbulent, and has complex shock-expansion wave interactions. It also in- 

volves strong shock-boundary layer interactions which may result in separat- 

ed regions. To analyze such flows, it is necessary to use the full Navier- 

Stokes equations with proper turbulence modeling. The objective of this 



work is to develop a numerical code to analyze the scramjet inlet flow 

field. A two-dimensional code has been developed initially to gain under- 

standing of some features of the inlet flow. 

The two-dimensional Navier-Stokes equations in conservative law form 

are used to describe the inlet flow. In order to facilitate the treatment 

of a general inlet geometry with embedded bodies, a numerical coordinate 

transformation is employed which generates a set of boundary-fitted curvi- 

linear coordinates (ref. 5). It transforms the physical domain into a rec- 

tangular domain with uniform mesh spacing, and embedded bodies are trans- 

formed into slits. The transformation allows for concentrating mesh lines 

in regions of high gradients. The transformed governing equations are 

solved by an explicit, time asymptotic, finite-difference method due to 

MacCormack (ref. 6). This explicit method is highly efficient on the 

vector-processing CDC-Cyber-203 computer at NASA/LaRC for which the current 

code is written. 

The code, in its present form, can analyze both inviscid and viscous 

(laminar and turbulent) flows with no-strut, one strut, or multiple struts 

in the flow field. In order to explore the potential of the code, several 

model problems have been solved. The results for two such problems are 

presented here. Detailed results for actual inlet geometries with one and 

two struts in the flow field are also presented. It is also indicated how 

this two-dimensional analysis can be used to estimate the flow spillage from 

an actual three-dimensional inlet of the type shown in figure 2. An exten- 

sion of the code to three dimensions is currently underway. 
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Tl 
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static enthalpy 
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Mach number at the face of the inlet 

freestream Mach number 

laminar Prandtl number 

turbulent Prandtl number 
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pressure at the face of the inlet 

components of heat flux in x, y system 

gas constant 

temperature 

temperature at the face of the inlet 

time 

components of velocity in x, y system 

transformed velocities defined in equation (3) 

Cartesian coordinates 

transformed coordinates 

components of stress tensor in x, y system 

density 

UI1 + lJt 

laminar viscosity 

turbulent viscosity 

sweep angle of the sidewall leading edge 



ANALYSIS 

Introduction 

This section describes the coordinate transformation, governing equa- 

tions, and the method of solution. Boundary and initial conditions are also 

discussed. 

Coordinate Transformation 

In order to facilitate the treatment of a general inlet geometry with 

embedded bodies, a numerical coordinate transformation is employed which 

generates a set of boundary-fitted curvilinear coordinates, T(x,y) and 

n (x,y>. It transforms the physical domain into a rectangular domain with 

uniform mesh spacings in the 5 and n directions. Embedded bodies are 

transformed into slits. As an example, figure 3(a) shows an inlet geometry 

with a strut EFGH sitting in the flow field. Figure 3(b) shows the inlet 

in the transformed plane. The outer boundary of the inlet, ABCD, is 

transformed to a rectangle A'B'C'D' and the strut EFGH is transformed to 

a slit E'G'. The upper surface of the strut is made coincident with one of 

the mesh lines and the lower surface of the strut is treated separately. 

The transformation allows for concentrating the mesh lines in regions of 

high gradients such as around the strut or near boundary surfaces. 

The coordinates are obtained using the approach of Thompson et al. 

(ref. 5) in which 5(x,y) and n(x,y) are solutions of the following 

equations: 

v2 r = p(r,n) (1) 
(cant 'd) 



v2 rl = qts,n> <c&%d> 

where V2 is the Laplacian operator a2/ax2 + a21ay2; P(5,n) and Q(<,n) 

are the source terms used to control the spacing of < = constant; and n = 

constant lines in the physical plane. In the present analysis, these terms 

are used in the form described in reference 5. The coordinates Z;(x, y> and 

r)(x, y> are subject to Dirichlet boundary conditions along boundaries AC 

and BD and Neumann boundary conditions along boundaries AB and CD. The 

NavierStokes equations are solved in the transformed plane, and the inlet 

flow field in the physical plane is obtained using the inverse transforma- 

tion x(s,n) and y(C,rl). 

Governing Equations 

Two-dimensional NavierStokes equations in fully conservative form are 

used to describe the inlet flow. The transformed equations can be written 

as: 

au +aM=aN=O 
at as arl 

(2) 

where P PU U=j pv [ 1 PH - P 

I 

PTi 

PUir + yrl (TX - % T 
F 

M= PvF+~~T 
XY 

-+,a 
Y 

PHii- PT + Yq (uox + qx> - xn (vu y + qy) + = yx by, - uxrl > 

and 
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P’ir 

puv - ys (TX + xr ‘cF 

N = pv?! - yL; Tyx - xc ay 

I 
pH7 - pv - yr (uUx + q,> + xC (WY + qy) + Tyx (-vy5 - ux$ 

Here, y denotes axlaG, etc. and 

ii=yu- 11 %v 

v= -y u + 
5 

x v 5 

J= xr;y, - xnyr (3) 

The quantities ux, U , and T 
Y YX 

are components of the stress tensor 

and are given by: 

U 
21.1 av 4~ au = 

X 
P+----- 

3 ay 3 ax 

2~ au 4~ av 
aY = 

P+----- 
3 ax 3 aY 

The components of heat flux, qx and qy, are given by: 

qx = - r&+2- ( Pr Prt ) ah - - 
ax 

(4) 

(5) 
(cont'd) 
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% % ah 
qY 

=- -+- - ( > Pr Prt ay 
(5) 

(concl'd) 

In order to complete the set of governing equations, equation of state 

p = pRT is used, where R is the gas constant. 

In equations (41, n is the sum of laminar viscosity and turbulent 

viscosity. The laminar viscosity for air is calculated from Sutherland's 

law. The turbulent viscosity is calculated from an algebraic, two-layer 

eddy viscosity model due to Baldwin and Lomax (ref. 7). This model does not 

require the knowledge of the boundary-layer thickness; instead, the model 

uses the vorticity at each point in the flow field to characterize the scale 

of turbulence. The model as such consists of an inner law and outer law. 

The inner law is applicable from the wall out to the location in the flow 

where the eddy viscosity given by the inner law is equal to that of the 

outer law. The outer law then is assumed applicable for the remainder of 

the flow. Details of the model are given in reference 7 along with the 

values of various constants used in the model. 

Method of Solution 

The governing equations are solved by a time-asymptotic, two-step, 

finite-difference method due to MacCormack (ref. 6). This explicit method 

has second-order accuracy in both space and time and is highly efficient on 

the CDC-Cyber-203 vector processing computer for which the current code is 

written. If a solution to equation (2) is known at some time t = nAt, the 

solution at the next time step, t = (n + 1)At can be obtained from 
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n+l 
U 

i,j 
= L(At) U?,j 

for each node point (i,j). The finite-difference operator L consists of a 

predictor step and a corrector step. Spatial derivatives in the predictor 

step are calculated by forward differences, while in the corrector step they 

are calculated by backward differences. The shear stress and heat flux 

terms appearing in M and N are backward differenced in the predictor 

step and forward differenced in the corrector step. When this method was 

applied to a two-dimensional, symmetric converging duct it was found that 

the symmetry of the flow field is better achieved by reversing the order of 

differencing for the predictor and corrector steps from one time-step to 

next time-step; i.e., if forward and backward differences are used in time- 

step n, then backward and forward differences should be used in time-step 

(n + 1). The order of differencing is also reversed for shear and heat flux 

terms. Details of the method and expressions for the predictor and correc- 

tor steps are given in reference 6. 

A slightly modified form of the fourth order numerical damping, given 

in reference 8, is used in the present analysis to damp the oscillations 

which occur in the neighborhood of strong shocks in the flow field. 

Boundary and Initial Conditions 

The flow variables at the inflow boundary are free-stream values, 

whereas first order extrapolation is used to obtain the flow variables at 

the outflow boundary. For viscous flows, the following boundary conditions 

are applied along the surfaces: 

9 



u=o 
(no-slip conditions) 

v= 0 

z = 0 (adiabatic wall) 
an 

aP - = 0 (approximate boundary condition for p) 
an 

where n is the normal to the surface. 

For inviscid flows, the tangency condition is satisfied on the sur- 

faces, i.e., 

V=O (7) 

The above boundary conditions are applied in both the predictor and 

corrector steps. Initial conditions are normally prescribed for each set of 

calculations by assuming that free-stream conditions exist at all the grid 

points except at the boundaries where proper boundary conditions are ap- 

plied. 

RESULTS AND DISCUSSION 

Calculations have been performed for two model inlet problems and two 

actual scramjet inlets having one and two struts, respectively. Detailed 

results for these cases are discussed in this section. All the results 

presented here are for air under a perfect gas assumption. 

The first model problem is shown in figure 3(a). The inlet length is 

10 cm with an initial height of 2 cm. The dimensions in this and the second 
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model problem have been fixed on the basis of certain features of the engine 

inlet flow, such as spillage, but are not typical of the actual engine di- 

mensions. The top surface of the inlet produces a si-degree compression. 

The cowl plate is located in such a way that the shock wave from the top 

surface does not hit the cowl plate, thus leaving some space between the 

shock wave and the cowl plate to allow for flow spillage. A four-degree 

half-angle strut is placed in the flow as shown in the figure. The physical 

domain, in which the calculations are made, starts 1 cm ahead of the inlet, 

thus bringing the total length to 11 cm. 

Figure 3(b) shows the inlet in the transformed plane. The boundary 

ABCD is transformed into a rectangular domain A'B'C'D', whereas the strut 

EFGH is transformed into a slit E'G'. Calculations are made for the fol- 

lowing flow conditions at the inflow boundary of the inlet 

MC0 = 5.0 

pal = 101,325 N/m2 (1 atm) 

To3 = 293 K 

Figure 4 and 5 show the pressure contours and velocity vector field, 

respectively, for the laminar flow. These plots are confined to the region 

downstream of line ZZ' in figure 3(a), where most of the flow distrubances 

take place. Upstream of line ZZ', the shock produced by the top surface 

turns the flow downward by about six degrees. Due to this, some of the flow 

spills out of the inlet just upstream of the cowl plate. The pressure 

contours in figure 4 clearly show the shocks and the expansion waves and 

their interactions with each other and with the inlet surfaces. The 
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velocity vector plot in figure 5 shows that the shock from the strut leading 

edge separates the boundary layer on the top surface of the inlet. A small 

separated region, caused by the shock from the cowl plate, is also produced 

near the trailing edge of the strut. 

Figures 6(a) and 6(b) show the pressure distributions on the inlet top 

surface and strut upper and lower surfaces. The results in figure 6(a) are 

again plotted in the region downstream of line zz' in figure 3(a). The 

inviscid pressure distribution in figure 6(a) shows that the pressure on the 

top surface of the inlet remains constant downstream of the s&degree 

compression corner until the shock from the leading edge of the strut upper 

surface hits the top surface and is reflected. This produces a large 

pressure increase on the top surface. The expansion waves from the strut 

shoulder interact with the leading edge shock and with the top surface. 

This results in a gradual decrease in the pressure on the top surface. 

Figure 6(b) shows that the pressure on the strut upper surface increases due 

to the leading edge shock. The pressure remains constant until the 

expansion waves at the strut shoulder decrease it. The flow goes through a 

small expansion again near the trailing edge of the strut. The pressure 

distribution on the lower surface of the strut shows that the flow undergoes 

two expansions produced by the strut leading edge and shoulder. The 

pressure increases near the trailing edge due to the shock from the cowl 

plate. 

The pressure distributions for the laminar flow are similar to those 

for the inviscid flow with two differences. First, the pressure level is 

slightly higher for the viscous flow due to the increase in effective com- 

pression angle. Second, the induced shock due to the boundary-layer 
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separation causes an increase in tne pressure as seen in figure 6(a) around 

x = 8.5 cm. 

As mentioned earlier, the geometry of the problem is such that the 

inlet does not capture the entire mass entering it. some mass is spilled 

from the lower boundary ahead of the cowl plate. The present inviscid code 

predicts a flow spillage of 2.64 kg/s, which is in excellent agreement with 

the value of 2.65 kg/s as calculated from the exact shock theory. For the 

laminar flow, the spillage is expected to increase due to steeper shock. 

The present code predicts 3.74 kg/s spillage for the laminar flow. The 

exact inviscid flow spillage for a 6.5" compression angle is 3.71 kg/s. 

This shows that the effective change in the body compression angle due to 

viscous effects in the laminar flow is approximately 0.5". 

The geometry of the second model inlet problem is shown in figure 7. 

The inlet length is 10 cm with an initial height of 1.5 cm. The calcula- 

tions are made in the region starting 1 cm ahead of the inlet, thus bringing 

the total length to 11 cm. The top surface produces a 10" compression at x 

= 1 cm and then a 20" expansion at x = 6 cm. The cowl plate is again 

located in such a way that the shock from the top surface does not hit it, 

thus allowing a fraction of the flow to spill out of the inlet. The flow 

conditions at the inflow boundary of the inlet are taken to be the same as 

in the previous problem. Calculations are made for inviscid, laminar, and 

turbulent flows. 

Figures 8 and 9 show the velocity vector field and pressure contours, 

respectively. For clarity, these plots are shown in the region downstream 

of the expansion corner from x = 6 cm to the end of the inlet. Upstream of 
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the expansion corner, the shock from the top surface turns the flow downward 

by about 10". Due to this, some flow spills out of the inlet ahead of the 

cowl plate. The velocity vector fields in figure 8 are plotted for the 

laminar and turbulent flows only. It is seen that the laminar boundary 

layer on the top surface separates due to the interaction of the cowl plate 

shock with the boundary layer on the top surface. The separation completely 

disappears for the turbulent flow under present flow conditions, since the 

turbulent boundary layer is able to accept higher adverse flow gradients 

without separating. 

The pressure contours in figure 9 are shown for inviscid, laminar, and 

turbulent flows. These contour plots clearly show the interaction of the 

cowl plate shock with the expansion waves from the top surface. Due to this 

interaction, the shock hits the top surface earlier than it would have with- 

out the interaction. The expansion waves go through the shock and attenuate 

the pressure on the cowl plate, whereas the shock is reflected from the top 

surface. It is also seen that the cowl plate shock hits the top surface far 

downstream for the inviscid flow, as compared to the laminar and turbulent 

flows. This is directly due to the viscous effects which make the shock 

steeper due to the increased effective body angle. 

Figure 10 shows the pressure distribution on tne top surface for the 

inviscid and laminar flows. The pressure is seen to increase due to the 

compression at x = 1 cm. It remains constant until it is decreased due to 

the expansion at x = 6 cm. It again remains constant until the cowl plate 

shock hits the top surface, which increases the pressure. The gradual 

decrease in the surface pressure towards the end of the inlet is due to the 

expansion waves which hit the top surface after being reflected from the 
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cowl plate. As expected, the pressure level for the laminar flow is seen to 

be slightly higher than that for the inviscid flow due to viscous effects. 

Although not shown here, the pressure level for the turbulent flow was even 

higher than that for the laminar flow. 

The flow which spills from the lower boundary, as calculated by the 

present analysis, is 9.26 kg/s for the inviscid flow, 11.26 kg/s for the 

laminar flow, and 13.41 kg/s for the turbulent flow. The exact values for 

the inviscid flow are 9.76 kg/s for 10" compression, 11.38 kg/s for 10.5" 

compression and 13.10 kg/s for 11" compression. Thus, this problem also 

shows that the effective change in the body compression angle due to viscous 

effects is approximately 0.5" for the laminar flow and 1" for the turbulent 

flow. 

In the next two problems, the flow field in a more practical scramjet 

inlet configuration having one or two struts is analyzed using the two-di- 

mensional code. before discussing the results for these problems, a brief 

description is given to explain how the two-dimensional analysis may be used 

to approximately calculate certain features of a threedimensional inlet of 

the type shown in figure 2. 

Figure 11 shows the side view of a scrsmjet module. The sidewall lead- 

ing edges are swept back at an angle U, and the Mach number at the face of 

the inlet is Ml. If the shock waves in the inlet do not detach and if the 

end effects are neglected, the component of the velocity parallel to side- 

wall sweep should remain unchanged, and the flow disturbances should occur 

in the plane ZZ' normal to the sidewall leading edge. The flow 

can therefore be solved using the two-dimensional code in the plane ZZ' 
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with Mach number MlN* The solution in the ZZ' plane can be projected 

to the plane of the cowl, and the velocity distribution in the plane of the 

cowl can be obtained by superimposing the constant velocity component over 

the above solution. Knowing the velocity and density distributions, it is 

possible to calculate the flow spillage from the threedimensional inlet as 

a function of cowl location. Thus, the two-dimensional analysis may be used 

in preliminary studies of the effects of strut and cowl locations and their 

shapes on inlet spillage. The two-dimensional analysis can also give an 

indication as to whether or not the inlet will start for a given set of 

flight conditions. 

The analysis for one-and two-strut inlets has been carried out in the 

plane ZZ'. The sidewall leading edge sweep is prescribed as 33”. Real- 

istic flow conditions are used in the analysis and are tabulated in table 1. 

The one-strut inlet is discussed first. Its geometry is shown in figure 12; 

the initial width of the inlet is 15 cm, and other dimensions and angles are 

shown in the figure. Figure 13 shows the pressure contours for the inviscid 

flow at three Mach numbers. No solution could be obtained at the lowest 

Mach number, & = 4, for which the shock waves detached in the inlet. For 

this case, after a sufficient number of time-steps, a normal shock formed 

just downstream of the inflow boundary, resulting in a large mass imbalance. 

The mass imbalance occurs when the governing equations fail to produce a 

solution for the prescribed inflow boundary conditions, i.e., the inlet 

minimum area section cannot pass the inflow mass and the flow chokes. It is 

seen from the contour plots in figure 13 that the shock wave from the side 

wall coalesces with the shock wave from the strut leading edge to form a 

stronger shock. For the laminar flow, the strong shock, formed by the shock 
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wave coalescence, caused a large separated region on the sidewall, which 

produced an induced shock in front of the separated region. The induced 

shock choked the flow in a manner similar to that described earlier, and 

again no meaningful solution could be obtained at any of the Mach numbers 

considered here. For the turbulent flow, the solution could be obtained at 

the highest Mach number but the flow choked again at lower Mach numbers. 

Table 2 summarizes the conditions for which the solutions could or could not 

be obtained. These are represented in the table by start and unstart of the 

inlet, respectively. 

To eliminate the problem of shock wave coalescence, a two-strut inlet 

is considered. The geometry of this inlet is shown in figure 14. The ini- 

tial width of the inlet is again 15 cm. Other dimensions and angles are 

shown in the figure. The strut surface, on which the shock from the side- 

wall strikes, is kept parallel to the oncoming flow so that no shock is 

produced by this surface. This avoids the possibility of shock wave coales- 

cence. Figure 15 shows the pressure contours for the laminar flow at three 

Mach numbers. The corresponding velocity vector fields are shown in figure 

16. No viscous flow solution could be obtained for the lowest Mach number 

due to the choking of the flow caused by the boundary-layer separation. The 

solutions could be obtained at all Mach numbers for the inviscid flow. 

Table 3 summarizes the conditions for which the solutions could or could not 

be obtained. The table clearly shows the improvement in the performance of 

the two-strut inlet over the one-strut inlet. 

The computations for all of the preceding problems were made on a CDC- 

Cyber-203 vector processing computer (an upgraded version of CDCSTAR-100 
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computer) using a mesh size of 51 x 51. The solution marches about 20 time- 

steps per second for the viscous flow and about 30 time-steps per second for 

the inviscid flow. A typical solution is obtained in two to five minutes 

depending upon the number of time-steps required for convergence. 

CONCLUSIONS 

Two-dimensional NavierStokes equations have been used to analyze the 

scramjet inlet flow. The analysis uses a numerical coordinate transforma- 

tion which generates a set of boundary-fitted curvilinear coordinates. The 

embedded bodies in the flow field are transformed into slits. MacCormack's 

time-dependent, finitedifference method is used to solve the governing 

equations. A two-layer eddy viscosity model is used for the turbulent flow. 

The code can analyze both inviscid and viscous flows with no-strut, one 

strut, or multiple struts in the flow field. 

Results are presented for two model problems and two actual scramjet 

inlets. The code predicts the complex wave interactions and shock-boundary 

layer interactions very well. The application of the two-dimensional analy- 

sis in preliminary design studies of the scramjet inlet is briefly discuss- 

ed. It is shown that the two-dimensional analysis can also give an indicrr 

tion as to whether or not the inlet will aerodynamically choke for a given 

set of flight conditions. An extension of the code to analyze full three- 

dimensional inlets is currently underway. 
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Table 1. Flow conditions. 

%a Ml MlN 
Pl Tl 

(atm> ("K) - - - - - 

4 3.43 2.88 0.095 322 

5 4.29 3.60 0.064 328 

6 5.18 4.34 0.045 329 

7 6.00 5.032 0.035 335 
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Table 2. Solution conditions for one-strut inlet. 

TvPe of Flow 
Mach Number 

CM, > Inviscid Laminar Turbulent 

7 Start Unstart Start 

6 Start Unstart Unstart 

5 Start Unstart Unstart 

4 Unstart Unstart Unstart 
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Table 3. Solution conditions for two-strut inlet. 

Type of Flow 
Mach Number 

(Moo) Inviscid Laminar Turbulent 

7 Start Start Start 

6 Start Start Start 

5 Start Start Start 

4 Start Unstart Unstart 
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Figure 2. Scramjet engine module and its cross section. 
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Figure 4. Pressure contours downstream of line ZZ'. 
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Figure 6(a). Pressure distribution on the top surface of the inlet downstream of line ZZ'. 
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Figure 6(b). Pressure distribution around the strut. 
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Figure 7. Geometry of the second model problem. 
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Figure 8. Velocity vector field downstream of line ZZ'. 
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Figure 9. Pressure contours downstream of line ZZ'. 
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Figure 10. Pressure distribution on the top surface of the inlet. 
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Figure 11. Side view of a scramjet module. 
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Figure 12. Geometry of one-strut inlet in a plane normal to sidewall leading edge. 
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Figure 13. Pressure contours for inviscid flow at various Mach numbers. 



58’ 
\,,. 

\ 
6.6( 

t 
----Y-=b”““” ’ 

\\\\\\“. \ \ / 
I 

I 

-1” \ n ,, 

Figure 14. Geometry of two-strut inlet in a plane normal to sidewall leading edge. 
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Figure 15. Pressure contours for laminar flow at various Mach numbers. 
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Figure 16. Velocity vector field for laminar flow at various Mach numbers. 
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